NICEATM

National Toxicology Program Interagency Center for the Evaluation Of Alternative Toxicological Methods

ICCVAM

Interagency Coordinating Committee on the Validation of Alternative Methods

Hen's Egg Test – Chorioallantoic Membrane (HET-CAM) Test Method

BRD Summary

Expert Panel Meeting January 11-12, 2005 Bethesda, Maryland

Current U.S. Regulatory Status of HET-CAM

 ICCVAM agencies were surveyed and, to the best of their knowledge, HET-CAM test method data have not been submitted to U.S. Regulatory Agencies

Primary HET-CAM Data Sources

Study	Accuracy (Severes/Total)			Intralab (Severes/Total)		Interlab (Severes/Total)	
Study	GHS	EPA	EU	CVs	GHS classific.	CVs	GHS classific.
Gettings et al. (1991)	3/9	3/9	2/9				
CEC (1991)			11/32			14	
Gettings et al. (1994)	1/18	1/18	1/18	•			
Bagley et al. (1992)	0/3	0/3	0/3			= 1	
Vinardell and Macian (1994)	0/2	0/2	0/2				
Balls et al. (1995) (Q)	15/45	10/45	14/48			40	15/29
Balls et al. (1995) (S)	11/17	6/12	11/19	• .	Carlos Pillar II	8	11/5
Kojima et al. (1995)	3/5	3/5	3/5	-			
Gettings et al. (1996)	8/23	10/25	6/25				
Spielmann et al. (1996)			45/118		4.4		
Hagino et al. (1999)	8/16	6/14	7/17			8	8/8

CV = coefficient of variation; classific. = classification

Other HET-CAM Reports Considered

- 39 other reports were identified that could not be used for an evaluation of accuracy or reliability due to the lack of:
 - comparative in vivo rabbit test data
 - quantitative in vitro data
- These reports discussed in Section 9
- To the extent possible, data requested from authors of studies considered most useful

HET-CAM Analysis Methods (1)

- Irritation Score (A) (IS(A))
 - Irritation responses are evaluated at 0.5, 2, 5 minutes
 - Time-dependent score are assigned to each endpoint
 - IS(A) is calculated by adding assigned scores
- IS(B)
 - Time of first appearance of endpoint is noted after application of test substance
 - IS(B) is calculated using empirically derived formula
- Q-Score
 - Calculated as ratio of test substance irritation score to investigator determined reference standard irritation score

HET-CAM Analysis Method (2)

S-Score

 Calculated as the highest total HET-CAM score for any endpoint evaluated

IS and ITC

- Two analysis methods used
- Irritation score calculated as IS(A) or IS(B)
- Threshold concentration defined as the lowest concentration required to produce a slight response after substance application

HET-CAM Database

- 246 different substances evaluated in 253 tests
- Distribution of substances among analysis methods
 - IS(A) = 64 substances (43 formulations, 21 chemicals)
 - IS(B) = 86 substances (52 formulations, 34 chemicals)
 - S-Score = 20 substances (all chemicals)
 - Q-Score = 49 substances (all chemicals)
 - IS and ITC = 118 substances (all chemicals or pharmaceutical intermediates)
- 20 Chemical classes tested*
 - Most frequent classes: alcohols, carboxylic acids, amines, and formulations
- 15 Product classes tested*
 - Most frequent classes: cosmetics, solvents, hair shampoos, soaps/surfactants

^{*} Classes with at least 3 entries

Distribution of Tests Among Analysis Methods

Method		Number of Testing Laboratories								
Wethou	1	2	3	4	5	6	7			
IS(A)	47				13	4				
IS(B)	54		13	7	-	4	14			
S-Score	2	7	6	5						
Q-Score	2	6	1	40						
IS and ITC		118								

Major HET-CAM Protocol Variations

Study		# Eggs		Inc. Temp/		Rinsing	Endpoints	Method of
Study	Neg	Treat	Pos	Humidity	Tested	Killsilig	Evaluated**	Analysis
Gettings et al. (1991)				3			H, VL, C	IS(B)
CEC (1991)		6		37.5/62.5%	0.3 mL or 0.1 g	20 secs after	H, L, C	IS(B)
Gettings et al. (1994)		3		38/60%	0.3 mL		H, L, C	IS(A) IS(B)
Gettings et al. (1996)		3		38/60%	0.1 mL 0.3 mL		D, H, C H, L, C	IS(A) IS(B)
Bagley et al. (1992)	2	4		37.5/62.5%	0.3 mL or 0.1 g	20 secs after	нү, н, с	IS(A)
Vinardell and Macian (1994)	2	6	2		0.3 mL		H, V, C	IS(B)
Balls et al. (1995)						3 mins after*	H, L, C	S-Score, Q-Score
Kojima et al. (1995)		4		37.6/~70%	0.2 mL	20 secs after	HY, H, C	IS(A)
Hagino et al. (1999)		4		37.6/~70%	0.2 mL or 0.2 g	20 secs after	HY, H, C	IS(A)
Spielmann et al. (1996)		3				5 mins after*	H, L, C	IS & ITC

^{*} For non-transparent substances only

^{**} H = hemorrhage, VL = vascular lysis, C = coagulation, HY = hyperemia, L = lysis, D = dilation, V = vasoconstriction

Accuracy Analysis

- Ability to correctly identify ocular corrosives and severe irritants determined for
 - GHS classification system (Category 1)
 - EPA classification system (Category I)
 - EU classification system (R41)
- Accuracy statistics calculated:
 - for each HET-CAM test method protocol, by report and where appropriate
 - classifications were pooled into one classification per substance (i.e., majority call among studies used)
 - using individual studies, where a balanced design existed (multiple substances in multiple labs)

Analysis Method Accuracy - GHS

Analysis Method	Accuracy	Sensitivity	Specificity	False Positive Rate	False Negative Rate
IS(A)	75%	67%	79%	21%	33%
	(46/61)	(12/18)	(34/43)	(9/43)	(6/18)
IS(B)	85%	100%	80%	20%	0%
	(44/52)	(12/12)	(32/40)	(8/40)	(0/12)
Q-Score	62%	100%	43%	57%	0%
	(28/45)	(15/15)	(13/30)	(17/30)	(0/15)
S-Score	47%	36%	67%	33%	64%
	(8/17)	(4/11)	(4/6)	(2/6)	(7/11)

Recommended HET-CAM Version Accuracy

Statistic	GHS (n=52)	EPA (n=54)	EU (n=86)*
Accuracy	85% (44/52)	83% (45/54)	73% (63/86)
Sensitivity	100% (12/12)	93% (13/14)	95% (19/20)
Specificity	80% (32/40)	80% (32/40)	67% (44/66)
False Positive Rate	20% (8/40)	20% (8/40)	33% (22/66)
False Negative Rate	0% (0/12)	7% (1/14)	5% (1/20)

^{*} Additional 32 chemicals available for EU analysis only (individual animal data not available for GHS or EPA classification)

HET-CAM GHS Accuracy By Chemical/Physical Class

# of Substa			ances		Positive ate	False Negative Rate	
Class	Total	Cat 1	Cat 2A, 2B, NI	%	n	%	п
Overall	52	12	40	20	8/40	0	0/12
Formulation	50	12	38	18	7/38	0	0/12
- Hydroalcoholic formulation	9	3	6	33	2/6	0	0/3
- Oil/Water emulsion	18	1	17	24	4/17	0	0/1
- Surfactant-based formulation	23	8	15	7	1/15	0	0/8
Surfactant	2	0	2	50	1/2		
Liquids	52	12	40	20	8/40	0	0/12

Additional HET-CAM Accuracy Analyses (EU)

Statistic	EU (n=86)	Spielmann et al. (1996) - IS10 (n=112)	Spielmann et al. (1996) - IS100 (n=108)
Accuracy	73% (63/86)	68% (76/112)	57% (62/108)
Sensitivity	95% (19/20)	80% (32/40)	88% (35/40)
Specificity	67% (44/66)	61% (44/72)	40% (27/68)
False Positive Rate	33% (22/66)	39% (28/72)	60% (41/68)
False Negative Rate	5% (1/20)	20% (8/40)	12% (5/40)

Limitations of HET-CAM IS(B) Accuracy

- Impact of differences in test method protocols between studies is unknown; limits conclusions
- Most substances evaluated using IS(B) analysis method were:
 - Nonsevere substances
 - Formulations
 - Tested as solutions or liquids
- Limited information on analysis method ability to accurately identify a variety of chemical classes, product classes, and physicochemical properties (i.e., solids)

HET-CAM IS(B) Reliability Analysis

- Intralaboratory Repeatability and Reproducibility
 - Not conducted due to the lack of published intralaboratory
 HET-CAM data
- Interlaboratory Reproducibility
 - Qualitative analysis: Extent of agreement between testing
 laboratories when identifying corrosives and severe irritants
 - Quantitative analysis: Coefficient of variation (CV)

HET-CAM IS(B) Agreement Among Laboratories

% Interlaboratory	EU (3-5 labs, 32 substances)			
Agreement	%	n		
100% (all)	47	15/32		
≥60% (all)	91	29/32		
100% (severes)	70	7/10		
≥60%(severes)	100	10/10		

HET-CAM IS(B) Interlaboratory %CV Values

Coefficient of Variation Analysis	CEC (1991)
Mean	34.1
(all substances)	(n=14)
Median	33.1
(all substances)	(n=14)
Range (all substances)	6.6-74.9 (n=14)

^{*}n = number of substances
Interlaboratory %CV values based on results from five laboratories
CV = Standard deviation/mean

Limitations of IS(B) Reliability

- Intralaboratory reliability unknown due to lack of published data
- Interlaboratory reproducibility based on a small number of substances (n=14)

Draft HET-CAM BRD Proposals

- A proposed version of HET-CAM, which evaluates development of hemorrhage, lysis, and coagulation of vessels on CAM
- A proposed standardized protocol
 - Proposed test method protocol follows the method provided by ZEBET with IS(B) analysis method
 - Decision criteria previously described by Kalweit et al. (1987)
 - Proposed test method protocol requires the use of positive and negative controls
- Proposed additional optimization studies, including:
 - Retrospective analysis of decision criteria used to identify corrosives and severe irritants
 - Evaluation of additional endpoints (e.g., trypan blue absorption) for potential inclusion in the calculation of irritancy potential
- Once optimized, additional validation studies to further characterize accuracy and reliability of the optimized test method version